skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Kun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Recommender systems learn from past user preferences in order to predict future user interests and provide users with personalized suggestions. Previous research has demonstrated that biases in user profiles in the aggregate can influence the recommendations to users who do not share the majority preference. One consequence of this bias propagation effect is miscalibration, a mismatch between the types or categories of items that a user prefers and the items provided in recommendations. In this paper, we conduct a systematic analysis aimed at identifying key characteristics in user profiles that might lead to miscalibrated recommendations. We consider several categories of profile characteristics, including similarity to the average user, propensity towards popularity, profile diversity, and preference intensity. We develop predictive models of miscalibration and use these models to identify the most important features correlated with miscalibration, given different algorithms and dataset characteristics. Our analysis is intended to help system designers predict miscalibration effects and to develop recommendation algorithms with improved calibration properties. 
    more » « less